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Atomic Born radii (R) are used in the generalized Born (GB) equation to calculate approximations to the
electrical polarization component (Gpol) of solvation free energy. We present here a simple analytical formula
for calculating Born radii rapidly and with useful accuracy. The new function is based on an atomic pairwise
rij-4 treatment and contains several empirically determined parameters that were established by optimization
against a data set of>10 000 accurate Born radii computed numerically using the Poisson equation on a
diverse group of organic molecules, molecular complexes, oligopeptides, and a small protein. Coupling this
new Born radius calculation with the previously described GB/SA solvation treatment provides a fully analytical
solvation model that is computationally efficient in comparison with traditional molecular solvent models
and also affords first and second derivatives. Tests with the GB/SA model and Born radii calculated with
our new analytical function and with the accurate but more time-consuming Poisson-Boltzmann methods
indicate that comparable free energies of solventlike dielectric polarization can be obtained using either method
and that the resulting GB/SA solvation free energies compare well with the experimental results on small
molecules in water.

I. Introduction

The accurate modeling of molecules in solution using
molecular mechanics is a challenging problem because solvent
is an extended medium having an astronomical number of low-
energy states. To treat such a medium in a molecular calcula-
tion, both molecular1-3 and continuum4-10 models of solvent
have been developed. Molecular solvent models employ
hundreds or thousands of discrete solvent molecules and provide
the most widely used method for carrying out simulations in
liquid environments. Though many of the properties of solu-
tions and solutes have been reproduced using calculations
employing molecular solvent models, such calculations converge
only slowly to precise answers because of the large number of
particles and states involved. In fact, molecular solvent
calculations generally require several orders of magnitude more
CPU time than corresponding gas phase calculations on the same
solute. Because molecular solvent models are so computation-
ally demanding, we and others have a significant interest in
developing more rapid continuum solvation models. Continuum
models treat the solvent as a continuous medium having the
average properties of the real solvent and surrounding the solute
beginning at or near its van der Waals surface. In principle,
such models can provide solvation effects with relatively little
computational effort, because the properties of an analytical,
continuum solvent are converged by nature and because the
model includes no particles other than the atoms of the solute.
A variety of continuum solvation models have been described

over the years. Among these, treatments based on surface area
or solvent accessible surface area have been recurring themes.11-13

As a method for evaluating the total solvation free energy (Gsol),
however, we were concerned that area-based representations
would provide poor approximations of the long range electro-
static components of solvation. In particular, purely area-based
treatments are problematic in that they give constant solvation
energies for all arrangements of ions or other charged atoms
having nonintersecting solvent-accessible surfaces. Another

popular approach to continuum solvation treats a solute as a
distribution of charges or electrical multipoles in a cavity in a
dielectric continuum.14-17 Depending on the model, the cavity
may accurately follow the van der Waals surface of the solute
or it may be a simple geometrical object such as an ellipsoid
that approximates the shape of the solute. These models allow
one to compute approximations to a significant (in high dielectric
solvents) component of solvation energy, the electrostatic solvent
polarization energy (Gpol). While such continuum solvation
models are computationally efficient, calculating derivatives of
Gpol with respect to solute atom movement (e.g., for energy
minimizations or dynamics calculations) including the effect
of cavity boundary fluctuations is computationally intensive and
has not been widely used. Furthermore, such dielectric con-
tinuum models of the solvent do not include solvent-solvent
cavity terms (Gcav) or attractive van der Waals solvent-solute
interaction terms (GvdW).
Because of the shortcomings of previous models and because

we needed a practical solvation model for molecular mechanics
and dynamics calculations requiring derivatives, several years
ago we developed a new continuum solvation model (termed
the GB/SA model) that provided solvation free energies (Gsol)
based on a generalized Born (GB) treatment ofGpol and surface
areas (SA) for approximating the cavity and van der Waals
contributions to solvation.9

In the GB/SA model, the total solvation free energy (Gsol) is
given as the sum of a solvent-solvent cavity term (Gcav), a
solute-solvent van der Waals term (GvdW), and a solute-solvent
electrostatic polarization term (Gpol):

Because saturated hydrocarbons are nonpolar molecules (Gpol

∼ 0) and theirGsol in water is approximately linearly related11-13

to their solvent accessible surface areas (SA), the GB/SA model
computesGcav+ GvdW together by evaluating solvent-accessible
surface areas:4,5X Abstract published inAdVance ACS Abstracts,April 1, 1997.

Gsol ) Gcav+ GvdW + Gpol (1)
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where SAk (Å2) is the total solvent-accessible surface area of
all atoms of typek and σk (kcal/(mol Å2)) is an empirically
determined atomic solvation parameter. For hydrophobic atoms
in water and a solvent-accessible surface lying 1.4 Å outside
the van der Waals surface,σ has the value of∼0.01 kcal/(mol
Å2). In the work described here, solvent accessible surface areas
were computed numerically.
For Gpol (kcal/mol), we began with the generalized Born

equation and modified it to allow for application to irregularly
shaped solutes:

whereRij (Å) ) (RiRj)0.5 andDij ) rij2/(2Rij)2 and the double
sum runs over all pairs of atoms (i and j). Ri is the so-called
Born radius of atomi (see below).Dij is the squared ratio of
the i,jth atom pair separation to their mean Born diameters, and
its exponential is used to forceGpol to approximate the dielectric
part of Coulomb’s law rapidly as atomsi and j move beyond
the contact distance of their Born radii. This model has been
modified by Truhlar and co-workers and successfully used in
conjunction with semiempirical molecular orbital calculations.10

Although eq 3 is a simple, pairwise expression, it requires a
Born radius (R) for each atom in the solute having an atomic
charge (or partial charge). For a simple spherical solute with a
charge located at its center (e.g., a model for a metal ion),R
can simply be taken as the van der Waals radius of the solute.
But for more complex solutes, the Born radius of theith atom
(Ri) depends upon the positions and volumes of all other atoms
in the solute because they displace the solventlike dielectric
medium. The Born radius of a charged particle is actually not
so much a radius as it is a kind of average distance from the
atomic charge to the boundary of the dielectric medium. For
certain simple systems, the value ofR is thus obvious. For
example,R for an atom at the center of a spherical macromol-
ecule would be the radius of the macromolecule. For systems
having irregular shapes, however,R is more complicated to
evaluate. In previous descriptions of the GB/SA model,R for
such solutes has been obtained by a numerical, finite difference
method based on the Born equation.9 While this numerical
evaluation provided well-defined and reasonably accurate evalu-
ations ofR’s, it was also the most time-consuming part of the
GB/SA solvation calculation (eq 3). Furthermore, because of
the numerical nature of the previousR evaluation, full deriva-
tives ofGpol were not readily obtained.
In this paper, we describe a significant enhancement to the

GB/SA solvation model in the form of a fast, analytical approach
to computing atomic Born radii. Though our analytical ap-
proach toR is not exact, we show here that it yields Born radii
that compare reasonably well with accurateR’s calculated
numerically. Furthermore, in conjunction with the GB/SA
model for water, experimental solvation energies are well
reproduced by GB/SA calculations usingR’s computed either
by our rapid approximate method or by a slower but accurate
numerical method. Because the new approach to computing
Born radii makes the GB/SA solvation model fully analytical,
we implemented it several years ago with full first and second
derivatives as an unpublished feature in our molecular modeling
program MacroModel/BatchMin.18 In this paper, we describe
our analytical approach to Born radii in detail, reoptimize the

parameters associated with the model based on Poisson equation
derivedGpol energies, and show how the model performs in
reproducing accurate Born radii and experimental solvation
energies. We also compare its performance to a different
approach to Born radii recently described by Hawkinset al.19

II. Methods

To define our approach to computing Born radii (R), we begin
with the original Born expression (eq 4) for a monoatomic
spherical ion surrounded by a continuum dielectric medium

representing a solvent which relates the total dielectric polariza-
tion energy of the system (Gpol, kcal/mol) to the charge (q,
electrons), the dielectric constant (ε) of the medium, andR, the
ion’s effective or Born radius (or, more precisely, the distance
from the center of the ion to the boundary of the dielectric, Å).
For such a spherical system in a solventlike, continuum dielectric
medium, the effective dielectric boundary will be found at some
fixed distance (previously defined9 as the dielectric offset
distanceφ) from the van der Waals surface of the solute. Thus,
for a spherical monoatomic solute, there is a simple relationship
betweenR and the distance from the ion center to its van der
Waals surface (R ) φ + RvdW). For a polyatomic solute,
however, the corresponding distance from an atomic charge to
the molecular van der Waals surface will vary depending on
which part of the molecular surface is being considered. To
avoid the mathematical complexities associated with such an
angularly dependentR, we sought an appropriate way to average
the various distances from a given charge to all points on the
dielectric boundary to produce a single value ofR for use in eq
3.
The approach we developed begins with eq 4 and the

following idea. Imagine a polyatomic solute whose atoms are
all electrically neutral but displace the dielectric solvent medium
to create a solute-shaped cavity in the medium. For such a
system,Gpol ) 0. Now, choose an atom (i) and place an
electrical charge (qi) on it. The resulting system will now have
some nonzeroGpol. If we could compute thisGpol, we could
then use eq 4 to calculateRi, a value corresponding to a
spherically averaged, effective Born radius of atomi. Thus,
given a method to calculateGpol for a system consisting of a
continuum dielectric and an irregularly shaped solute with a
single charge located at any position within the solute, Born
radii for each atom in the solute could be readily calculated.
This general approach to Born radii was introduced as part of
the original GB/SA solvation model and assumes that the Born
radius of a given atom does not depend upon the charge
distribution in the system.9 The following paragraphs describe
a method for carrying out suchGpol calculations in the context
of a solute having atom-centered charges in a continuum
dielectric medium. We begin by describing our analytical
method for the rapid calculation of suchGpol’s and thus Born
radii.
An Analytical Approach to Born Radii ( r). In order to

computeR efficiently, we sought an analytical function leading
to usefully accurate Born radii via a simple pairwise evaluation
of the atoms in a molecular solute. The idea we developed is
best described with the aid of Figure 1. Imagine that we wish
to computeRi in a polyatomic solute in a solvent represented
by a continuum dielectric. All of the atoms of the solute may
be considered to displace any dielectric within their van der
Waals surfaces to create a solute-shaped cavity in the solventlike

Gcav+ GvdW ) ∑
k)1

N

σkSAk (2)

Gpol ) -166.0(1-
1

ε
)∑
i)1

n

∑
j)1

n qiqj

(rij
2 + Rij

2e-Dij)0.5
(3)

Gpol ) -166.0(1- 1
ε)
q2

R
(4)
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dielectric medium as indicated in Figure 1A. In order to
calculateRi, we computeGpol,i for a simplified system in which
all atoms in the solute except fori are electrically neutral as
outlined above. To computeGpol,i, we start by removing all
the atoms in the solute except atomi (Figure 1B). TheGpol,i

energy of that system would be simply given by the Born
equation (eq 4), withR equal to atomi’s van der Waals radius
(plus anyφ). Now consider the effect on the system of including
one of the solute’s other atoms (e.g., atomj, Figure 1C). While
atomj is uncharged, it changesGpol,i because it displaces a piece
of dielectric medium equivalent to its volume (Vj). The
inclusion of atomj thus results in an increase of the energy of
the system (Gpol,i becomes less negative) which is proportional
to Vj and inversely proportional to the distance between atoms
i andj (rij) raised to the fourth power.20 ThisVj/rij4 relationship
follows from the loss of a classical charge/induced dipole
interaction between the charge on atomi and the dielectric
medium that is displaced by atomj. By similarly including
the effects of dielectric displacement by all other atoms in the
solute,Gpol,i for the full solute system (approximately Figure1A)
could be computed and its reciprocal would yieldRi via eq 4.
Though the above model for computingGpol,i is reasonable,

it is also simplistic in that it defines the solvent dielectric as
occupying all regions of space outside the van der Waals
envelopes of the individual atoms of the solute. In reality,
however, a molecular solute in molecular solvent includes
numerous small voids between solute atoms that are too small
to be filled by solvent molecules. Furthermore, there may be
overlaps of certain atomic volumes. Finally, theVj/rij4 relation-
ship is accurate only when atomsi and j are widely separated
(rij is large). While such defects in our model could be
corrected, we thought that the basic model might capture the
essential physics of the system and thus be useful for rapidly
computing approximate Born radii. We added a series of
empirical scaling parameters to the basicV/r4 equation in an
attempt to minimize the effect of model defects in an average
sort of way. We then optimized the values of these scaling
parameters (P1-P5) to best reproduce accurateGpol,i for the
atoms in a diverse set of molecules. The explicit equation we
use is given as eq 5a and yieldsG′pol,i, a polarization energy
that assumes a unit charge on atomi and a surrounding medium
of high dielectric (1- 1/ε ≈ 1.0):

whereGpol,i ) polarization energy of atomi (kcal/mol), φ )
dielectric offset (Å),rij ) distance between atomsi and j (Å),
Vj ) volume of atomj (Å3), RvdW-i ) van der Waals radius of

atom i (Å), P1 ) single-atom scaling factor,P2 ) 1,2 scaling
factor,P3 ) 1,3 scaling factor,P4 ) 1,g4 scaling factor,P5 )
soft cutoff parameter, and CCF) close contact function for
1,g4 interactions where

otherwise

Making the same assumptions regarding the charge on atom
i and dielectric constant of the medium, we can then use the
simplified Born equation (5b) to computeRi:

The right-hand side of eq 5a definesG′pol and depends on neither
ε nor the charge distrubution.Ri (eq 5b) depends onG′pol only
and is therefore also independent ofε and the charge distribution.
The first equality in eq 5a shows thatG′pol may be interpreted
as the infinite-dielectric limit ofGpol.
The first term in eq 5a gives the Born energy of atomi alone

in the dielectric medium (as in Figure 1B). The remaining three
terms take into account the effect of all other atoms (atomsj in
Figure 1C) which make the magnitude ofGpol,i smaller by
displacing the dielectric medium. We distinguish these other
atoms by their connectivity to atomi. Thus, atoms involved in
1,2-stretching interactions with atom i are treated differently
from those involved in 1,3-bends or nonbonded (1,g4) interac-
tions. We made this distinction because we expected our simple
pairwise model to show deviations from a real molecular system
that depended systematically on the separation of the atom pairs
(e.g., covalent bound atoms (1,2-stretching interactions) would
be expected to be systematically more overlapping than any
other pairs of atoms). The separation of atomic pairs into classes
corresponding to stretch, bend, and nonbonded categories, which
correlate with increasing pair separation and geometrical
disposition, also allows the scaling parameters to accommodate
systematic deviation from idealV/r4 behavior asr increases.
The only deviation of our model from the scaledV/r4 treatment
occurs when nonbonded atom pairs come within 80% of their
summed van der Waals radii and thus overlap significantly. In
that situation, the CCF is used to reduce the effective volumes
of the overlapping atoms.
Associated with eq 5a are several details of implementation

that improve the model’s efficiency and are justified by the facts
that bond lengths and bond angles do not vary greatly among
different conformations of the same molecule. Thus, forj atoms
involved with atomi in stretching (term 2 in eq 5a) and bending
interactions (term 3 in eq 5a), we take equilibrium bond lengths
and angles from the molecular mechanics force-field stretch and
bend parameters to definerij rigidly for those terms. Thus, all
terms in eq 5a can be taken as constants (connectivity dependent
but coordinate independent) for a given molecule except for
the last term which deals with the effects of nonbonded atoms.
This simplification allows the contributions of 1,2- and 1,3-
atom pairs toR to be computed once at the beginning of an
energy minimization or molecular simulation and then used as
constants throughout the rest of the calculation.
For atomic volumes (Vj) in eq 5a, we use simple atomic

volumes minus those subvolumes that would lie inside directly
bonded atoms (k). Thus, given constant bond lengths,Vj is also

Figure 1. V/r4 model for evaluating the Born radius of atomi in a
solute (see text).

G′pol,i )
Gpol,i

1-
1

ε

)
-166.0

RvdW-i + φ + P1
+ ∑

stretchP2Vj

rij
4

+ ∑
bendP3Vj

rij
4

+

∑
nonbondedP4VjCCF

rij
4

(5a)

CCF) 1.0 if ( rij
Rvdw-i + Rvd-j

)2 > 1
P5

CCF) {0.5[1.0- cos{( rij
Rvdw-i + RvdW-J

)2P5π}]}2

Ri ) - -166.0
G′pol,i

(5b)
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a constant and is thus given by

wherehjk is the difference betweenRvdW-j and the vector from
the center of atomj to the center of the circle formed by the
intersection of the overlapping spheres.

For van der Waals radii, we use atomic radii taken as 0.5σ from
the Jorgensen OPLS force field21 except for hydrogens to which
we assign a radius of 1.15 Å as described previously.9 Given
our rigid treatment of atoms directly bonded to atomi, the
distance between bound atomsj andk (rjk) is also a constant
which we define to be 1.01l0, wherel0 is the natural length of
that bond as given by the molecular mechanics force field in
use. The 1% increase inl0 allows for the minor stretching of
bonds that commonly accompany energy minimization.
In tests on small molecules, we find the assumptions of

constant bond lengths and angles (using natural lengths and
angles from a standard molecular mechanics force field) to
change the total solvation energies by<1% in comparison with
solvation energies having 1,2 (stretching) and 1,3 (bending)
terms computed from actual, energy-minimized atomic coor-
dinates.
One further simplification was made to improve the model’s

efficiency, and that entails using the united-atom approximation
for the hydrocarbon portions of the solute. The united-atom
approximation is common in the modeling of large molecules
and involves substitution of carbons and all directly bound
hydrogens with single, enlarged superatoms. The justification
of the united-atom approach is that hydrogens are relatively
small atoms and lie mostly within the van der Waals envelope
of attached carbons. In eq 5a, this approximation significantly
reduces the number ofj atoms that have an effect on the Born
radius of atomi by eliminating the effect of all hydrogens bound
to carbon and instead using the appropriate united-atom radius
for these carbons.
To determine the best values for parametersP1-P5 in eq 5a,

we first computed a large number of atomic Born radii using
the Poisson-Boltzmann (PB) equation as implemented in the
DelPhi program of Honiget al.15-17 DelPhi is widely regarded
as a reliable predictor of electrostatic interactions in polar
solvents and has been successful in computing good approxima-
tions to the electrostatic component of hydration energies.22 The
program uses a finite difference method to iteratively solve the
PB equation (FDPB) for a charge-bearing molecular solute in
a continuum dielectric medium and thus provides a method for
computing accurateGpol energies assuming atom-centered solute
charges and a dielectric continuum surrounding the solute. In
our calculations, the ionic strength was set to zero so we actually
used DelPhi to solve the Poisson equation.
Given the FDPB approach to computingGpol and its relation-

ship with R (eq 4), it is possible (though time-consuming) to
compute accurate Born radii for all atoms in virtually any
molecule in a solventlike, continuum dielectric medium. Thus,
to compute the Born radius for atomi in a molecule, one places
a unit charge on that atom (qi ) 1.0) and sets the charges of all
the other atoms in the molecule to zero. DelPhi is then used to
compute the polarization energy of the system (Gpol,i) with a
solute dielectric constant of 1.0, a solution ionic strength of 0.0,
and a water-like continuum dielectric medium (ε ) 80) starting

at the van der Waals boundary of the solute. The same OPLS-
derived van der Waals radii were used in these FDPB calcula-
tions as were used with eq 5a (see above). Applying Born eq
4 to theGpol,i thus calculated gives the Born radius of atomi
(Ri). To the extent that DelPhi’s FDPB calculation is accurate,
Ri will also be accurate.
We use an internal dielectric constant of 1, rather than a value

in the range 2-4, as used by Honig and co-workers,15-17 because
the Born equation (eq 3) we are using assumes an internal
dielectric constant of 1. This value forε has been shown to be
appropriate when considering the solvation energies of small
molecules.23

We optimized the parametersP1-P5 in eq 5a to minimize
the discrepancy between Born radii determined by the above
FDPB method and by eq 5a. We first assembled a data set of
189 representative organic molecules and biopolymers contain-
ing more than 10 000 atoms (see supporting information). These
structures included both all-atom and united-atom (hydrocarbon
fragments only) representations of the molecules. All molecules
in the data set were first energy minimizedin Vacuousing the
MacroModel AMBER* force field.25 Next we used the above
FDPB method and eq 4 to evaluate an accurate Born radius for
each atom in every molecule in the data set. Our parameter
optimization procedure used a simulated annealing algorithm
combined with the downhill Simplex method26 that randomly
variedP1-P5 to minimize an error function (eq 7) comparing
results from FDPB and eq 5a.
Our error function (eq 7) was defined as the average squared

difference between atomic polarization energies (G′pol,i) com-
puted by FDPB and eq 5a for all atoms in the data set. We
based our error function onG′pol,i instead of the corresponding
Ri because we are more interested in reproducing polarization
energies than Born radiiper se. This choice of ERROR biased
the optimization procedure toward atoms having smaller Born
radii, thus making it more sensitive to those atoms making the
largest contributions to dielectric polarization energies.

N is the total number of atoms in the data set (here 10 034) and
G′pol,i indicates the atomic polarization energies based on an
atomic charge (qi) of 1.0 and medium dielectric constant of 80.
After optimization ofP1 throughP5, the value of ERROR

(eq 7) was 7.9 kcal/mol. This value of ERROR corresponds
approximately to a 3% average error inG′pol-i for atoms in these
ionic model systems. Analyzing the Born radii calculated by
parameterized equations (5a) and (5b) for the entire data set,
we found that Born radii for certain atom types were consistently
too small relative to accurate Born radii from FDPB calculations
(see Table 1, column eq 5a). These atoms were S, Cl, N(sp2),
N(sp3), H(N), and H(O). We therefore increased the van der
Waals radii of these atom types by 5% except for S whose radius
was increased by 10%. Reoptimization ofP1 throughP5 using
these altered radii in eq 5a then led to ERROR) 6.9 kcal/mol,
and the results are summarized in Table 1, column eq 5a*. The
final values for these parameters are

Vj )
4

3
πRvdW-j

3 - ∑
k

1

3
πhjk

2(3RvdW-j - hjk) (6)

hjk ) RvdW-j(1+
RvdW-k

2 - RvdW-j
2 - rjk

2

2RvdW-jrjk )

ERROR)x∑
i)1

N

(G′pol,i (eq 5a*)- G′pol,i(FDPB))
2

N
(7)

P1 0.073
P2 0.921
P3 6.211
P4 15.236
P5 1.254
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While the work described here was underway, a different
pairwise approach for the evaluation of Born radii was reported
by Hawkinset al.19 Their method was based on our original
finite difference Born shell approach to Born radii but employed
a pairwise descreening approximation27 to make the approach
both rapid and analytical. We term this method the PDA
method. The PDA method is similar in spirit to ourV/r4 method
(eq 5a) in that it computes an atom’s Born radius by summing
the effects of dielectric displacement by all other atoms in the
molecule. Though both methods approach the Born radius
problem using an atomic pairwise algorithm, the basic underly-
ing models differ in that the PDA method is an analytical
approximation to our original Born shell model,9 whereas our
new work is based on theV/r4 model of Figure 1. To see how
the PDA method performs relative to eq 5a and accurate FDPB
results, we programmed and tested the Hawkins formula for
R-1.
Like ourV/r4 model, the PDA approach is simplistic in that

it does not explicitly deal with voids between atoms or atomic
overlaps. Instead, empirical scaling factors (Sx) are used to
adjust the atomic radii to minimize such effects. These scaling
factors were optimized to best reproduce known solvation
energies of more than 100 organic molecules using a GB/SA-
like solvation model with SM2 atomic radii and AM1-derived
partial charges. Their values as given by Hawkinset al. are
shown below under theSx column:

In comparing the results from the PDA method with those
from ourV/r4 method (eq 5a) and FDPB, we used Hawkinset

al.’s original scaling factors (Sx) as well as modified scaling
parameters (Sx*) that we optimized to minimize the same error
function (eq 7) and data set used to optimizeP1 throughP5.
These modified scaling parameters should be more appropriate
for the OPLS atomic radii and charges used here. We term the
results of the PDA method with our modifiedSx* scaling factors
as the PDA* results in the discussion below. For compounds
containing sulfur, phosphorus, or halogens, no PDA or PDA*
calculations were carried out because scaling parameters were
unavailable for those atom types.

III. Results and Discussion

In the following sections, we test the ability of ourV/r4 model
(eq 5a) to reproduce solventlike, continuum dielectric polariza-
tion energies (atomicG′pol,i and molecularGpol) from FDPB
calculations. We also useV/r4 and FDPB-derived Born radii
in our GB/SA solvation model to compute the total solvation
energies (Gsol) of small molecules in water where experimental
data are available. Finally, we provide similar comparisons
using the PDA approach to Born radii.
IIIa. Comparison with Finite Difference Poisson-Boltz-

mann (FDPB) Results. Because solution of the Poisson
equation provides polarization energies for charge-bearing
objects in a continuum dielectric medium, it provides a
convenient source of accurateG′pol,i data for comparison with
corresponding energies calculated using theV/r4 model (eq 5a).
This comparison for all 10 034 atoms in our data base is shown
graphically in Figure 2A. To make the correlation graphs easier
to read, we have plottedG′pol,i for small molecules and large
molecules (various nonapeptide conformations and crambin)
separately. As these graphs show, theV/r4 model does the best
job at reproducing FDPB atomic polarization energies for those
atoms having the largest (most negative) solvent polarization
energies. Those atoms are the ones having the smallest Born
radii. Thus, the atoms making the largest contributions to
solvent polarization energies are most accurately treated. While
most atoms had solvent polarization energies that were within
a few percent of the correct FDPB results, a significant number
of atoms having larger Born radii (less negativeG′pol,i) had Born
radii that were systematically smaller than those from the FDPB
calculations. These outliers occurred primarily in the larger
molecules and tended to be those atoms most deeply buried
within a solute.
In the FDPB method, a Connolly surface is used to define

the solute boundary and to exclude dielectric from small voids
in regions of densely packed solute atoms. In contrast, theV/r4

model uses atomic van der Waals surfaces to define those
volumes from which the dielectric is excluded. This approach
effectively leaves small, interstitial void volumes containing
dielectric within the solute. While the parameterization de-
scribed above minimizes such differences in an average way,
differences still remain, especially for deeply buried atoms in
large molecules. The net effect is that these atoms often
experience a higher microdielectric environment in theV/r4

model than in the FDPB treatment.
Table 2, column eq 5a*, provides statistical data on the

correlation between eq 5a and FDPB calculations of atomic
medium polarization energies. Given there are correlation
coefficients (r) for a linear fit betweenG′pol,i computed by the
two methods. Atomic polarization energies for small molecules
are better reproduced (r ) 0.96) than those of large molecules
(r ) 0.92), as expected given our systematic overestimation of
G′pol,i for buried atoms. The average unsigned error inG′pol,i
for all 10 034 atoms in our data set is 4.27 kcal/(mol atom)
(just under 6% of the mean atomic polarization energy).

TABLE 1: Average Errors in Born Radii ( r) Based on
Atom Type

av error) R -
R(FDPB), Å

atom
MacroModel
atom type eq 5aa eq 5a*b no. atomsc

C(sp) C1 -0.028 0.002 1
C(sp2) C2 0.024 0.070 1668
C(sp3) C3 -0.135 -0.102 723
CH(sp3) CA -0.043 0.015 727
CH2(sp3) CB 0.062 0.096 597
CH3(sp3) CC 0.145 0.180 393
CH(sp2) CD 0.096 0.132 245
O(sp2) O2 -0.099 -0.066 940
O(sp3) O3 -0.138 -0.097 331
O- OM 0.001 0.029 209
N(sp) N1 -0.011 0.015 1
N(sp2) N2 -0.249 0.014 876
N(sp3) N3 -0.406 -0.225 14
N+(sp2) N4 0.119 0.153 69
N+(sp3) N5 -0.048 -0.018 86
H(C) H1 -0.069 -0.051 1638
H(O) H2 -0.187 -0.072 232
H(N) H3 -0.564 -0.410 857
H(N+) H4 -0.023 0.000 365
S S1 -0.574 -0.241 35
P P0 -0.128 -0.099 17
F F0 -0.112 -0.099 17
Cl Cl -0.285 -0.120 17
Br Br -0.030 0.001 1
I I0 -0.024 0.007 4

a By V/r4 model (eq 5) using OPLS radii and 1.15 Å for H.b V/r4

model (eq 5) using OPLS radii and 1.15 Å for H except that N(sp2),
N(sp3), H(O), H(N), and Cl are enlarged by 5% and S is enlarged by
10% (see text).cNumber of atoms in data set of designated atom type.

atom Sx Sx*
H 0.82 0.78
C 0.70 0.77
O 0.54 0.64
N 0.66 0.66
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Also given in Table 2 (eq 5a* column) are Born radius data
computed fromG′pol,i (eq 5b) for the same 10 034 atoms. The
correlation between theseV/r4- and FDPB-derived Born radii
is weaker (r ) 0.85) than with the energetic equivalentG′pol,i,
and the average unsigned error in Born radii over the entire set
is 0.17 Å/atom. As discussed above, the greatest differences
in Born radii are found with those atoms having the largest Born
radii. These effectively larger atoms contribute the least to the
solvation energies so that the overallV/r4-derived and FDPB
energetic results still agree reasonably well, as we show below.
We next investigated the agreement between GB and FDPB

in computing solventlike dielectric medium (ε) 80) polarization

energies (Gpol) for molecules bearing complete sets of atomic
charges. The same charge sets were used in both calculations
and came from the AMBER* force field.25 The molecules were
the same 189 organic and biological molecules used in the above
G′pol,i andRi calculations. TheGpol comparison in which the
GB calculations employedV/r4-derived Born radii is shown in
Figure 3A. There is a strong linear correlation (slope) 1.000,
correlation coefficient) 0.999) between the twoGpol calculation
results. The differences that do exist are generally small relative
to the total solvation energies involved and are explicitly plotted
next to the correlation graph. The molecule having the largest
difference inGpol energy as calculated by the GB method with

Figure 2. Comparison of atomic dielectric medium polarization energies (G′pol,i, kcal/(mol atom)) computed by various methods. Panel A: GB
radii from eq 5a with optimal atomic radii. Panel B: GB radii using the method of ref 19. Panel C: GB radii using method of ref 19 with reoptimized
Sx parameters.
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V/r4 Born radii is the protein crambin, the largest molecule in
the data set. Even here the+16 kcal/mol GB/FDPB difference
is relatively small: about 7% of crambin’s total dielectric
polarization energy. The average unsigned error of GB(V/r4)
Gpol relative to FDPB for all 189 molecules in the data set is
1.93 kcal/mol.
Because the above molecular GBGpol calculations depend

both upon the validity of the GB equation (eq 3) and of the
V/r4 model (eq 5), we carried out one further test to probe the
sensitivity of theseGpol calculations to the above-noted errors
in V/r4-derived Born radii. This test involved using accurate,
FDPB-derived Born radii in the GB equation. The results are
plotted in Figure 3B and indicate the bestGpol results that the
GB equation (3) can provide relative to fullGpol calculations
by the FDPB method. While the errors in molecularGpol are
generally smaller with FDPB-derived Born radii, the improve-
ment is not dramatic and the average unsigned error for the
entire data set is now 1.74 kcal/mol.
IIIb. Comparison with Experimental Free Energies of

Solvation in Water. While the above comparisons with
Poisson-Boltzmann calculations support the utility of the GB
and V/r4 approximations in computing polarization energies
(Gpol) for a molecular solute in a dielectric continuum medium,
the medium in real-world applications of the method is not a
dielectric continuum but a real molecular solvent. We therefore
ask how well GB calculations using various sources of Born
radii reproduce actual solvation free energies for the polar sol-
vent water. Here, accurate experimental data are more limited
and are available only for certain small molecules. To compare
our calculations with experiment, we chose 36 small organic
molecules having diverse functional groups and whose hydration
free energies appeared accurately known.28 As in the original
GB/SA work,9 we also limited the molecules to those bearing
functional groups having atomic partial charges defined by
Jorgensen’s OPLS force field21 or derived from electrostatic
potential fitting to minimally HF/6-31G*ab initio wave
functions.
To calculate the total solvation free energies of these

molecules, we used the GB/SA solvation model (eqs 1-3) using
Born radii calculated using the methods described above. In

the original GB/SA work,9 all atoms were treated as hydrophobic
and used the same atomic solvation parameter (σ ) 7 cal/(mol
Å2)) in the solvent-accessible surface area (SA) part of the
model. Since that time, we have adopted Cramer and Truhlar’s
approach19 of using differentσ’s for different atom types though
we distinguish only a few atom types in this way. Thus, we
treat atoms based on their approximate hydrophobicity/hydro-
philicity and use the following three area-based atomic solvation
parameters for the common atom types:σ(C(sp3), S)) 10 cal/
(mol Å2), σ(C(sp2), C(sp), P)) 7 cal/(mol Å2), σ(O, N) ) 0
cal/(mol Å2). To speed our surface area calculations, we employ
the united atom approximation in the SA part of the GB/SA
model, and thus,σ(H) is zero.
The results of our GB/SA hydration free energy (Gsol)

calculations are summarized along with experimental data in
Table 3. Results using ourV/r4 Born radius model are given
in column eq 5a* and plotted in Figure 4. There it can be seen
that GB/SA(R from V/r4) solvation energies are strongly
correlated with experiment (average unsigned error 0.9 kcal/
mol, linear fit slope) 0.96, r ) 0.94). We also carried out
analogous GB/SA calculations using accurate, FDPB-derived
Born radii. Those data are shown in the FDPB column of Table
3 and have an average unsigned error of 0.8 kcal/mol. Thus,
comparable accuracy relative to experiment is obtained in our
GB/SA Gsol calculations regardless of the source of the Born
radii. The utility of theV/r4 model for computing Born radii
for use in the GB/SA solvation model would therefore seem to
be validated.
Finally, we tested the basic GB equation (eq 3) of our GB/

SA model for solvation by replacing the entire GB equation
with a full FDPB calculation ofGpol. Those results are given
in Table 3 under the FDPB/SA column and yield an average
unsigned error of 0.9 kcal/mol relative to experiment. Thus,
to the extent that experiment is the best yardstick for assessing
the usefulness of a model in real applications, we find no
evidence that the FDPB method is any better than the simpler
GB approximation. Indeed, we think it likely that the ap-
proximation of a polar molecular solvent by a simple continuum
dielectric is more significant than the difference between FDPB
and GB approaches toGpol.
IIIc. Comparison with the Pairwise Descreening Method.

We also carried out similar tests on the related PDA approach
to Born radii recently reported by Hawkinset al.19 As noted
in the Methods section, we found it advantageous to reoptimize
their Sx based on our van der Waals radii and FDPB-derived
G′pol,i. We have compared the results with both the original
(PDA, Sx parameters) and the revised (PDA*,Sx* parameters)
parameter sets. The PDA and PDA* comparisons with FDPB
G′pol,i are given in parts B and C of Figure 2. GB(PDA or
PDA*) molecular solvation energies are compared with FDPB
results and experiment in Figure 3C and Table 3.
For atomic solvent polarization energies and Born radii, the

original PDA method provided a reasonable correlation with
FDPB-derived results. However, using the reoptimized scaling
factors (Sx*), PDA* performed significantly better relative to
FDPB, especially with large molecules (Figure 2C). Statistics
for these PDA and PDA* calculations are given in Table 2 and
quantify the improvement inG′pol,i and Ri with the PDA*
parameter set.
We then compared theGpol from FDPB and GB(PDA) for

139 molecules in our data set that did not contain sulfur,
phosphorus, or halogen. For the small molecules, PDA Born
radii in conjunction with the GB equation yieldedGpol that are
in good agreement with molecular FDPB results but systemati-

TABLE 2: Comparison of Atomic Polarization Energies
(G′pol,i, kcal/mol) and Born Radii (ri, Å) Calculated by
Various Methods and Compared to Poisson-Boltzmann
Resultsa

polarization energies FDPBb eq 5a*c PDAd PDA*e

mean energy per atom -76.7 -77.6 -85.7 -78.4
slope (small mols)f 0.93 1.01 0.97
corr (small mols)g 0.96 0.97 0.95
slope (large mols)f 0.83 0.74 0.78
corr (large mols)g 0.92 0.83 0.90
av unsigned error 4.27 9.40 5.89

Born radii FDPBb eq 5*c PDAd PDA*e

meanR 2.33 2.27 2.01 2.18
slopef 0.64 0.46 0.75
corrg 0.85 0.58 0.82
av unsigned error 0.17 0.31 0.21

aData computed for 10 034 atoms in 189 molecules bearing single-
unit charges (qi ) 1) and in an external dielectric continuum withε )
80 except for PDA and PDA* results which are based on 7407 atoms
in 139 molecules (see text).b Accurate result given by finite difference
Poisson-Boltzmann calculation.c V/r4 model (eq 5).d Pairwise de-
screening approximation method of Hawkinset al.19 (G′pol,i ) -166Ri

-1).
ePairwise descreening approximation method withSx*-modified scaling
parameters (see text).f Slope of linear fit between designated method
and FDPB.gCorrelation coefficient for linear fit of points between
designated method and FDPB.
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cally and significantly overestimate the FDPB energies for larger
molecules (data not shown). Using PDA*, however, the larger
molecules were brought back into line with only a small
reduction in the goodness-of-fit for the small molecules.
Overall, the GB(PDA*)Gpol energies were nicely correlated to
accurate FDPB energies (linear slope) 1.012, r ) 0.999)
(Figure 3C). The average unsigned errors for such GB(PDA*)
and GB(PDA)Gpol calculations are 1.84 and 10.19 kcal/mol.
Finally, PDA and PDA* Born radii in the GB/SA calculations
of hydration free energies of small molecules both give good
correlations with experiment (average unsigned errors of 1.1
and 1.0 kcal/mol, respectively; see Table 3).

Overall, both theV/r4 and the PDA (or PDA*) models provide
valuable methods for rapidly computing useful, though approx-
imate, Born radii. Relative to FDPB calculations for both large
and small molecules, theV/r4 model is marginally more accurate,
although the effect of this on solvation free energies is probably
negligible. Although the average unsigned error in reproducing
observed solvation energies of small molecules is somewhat
smaller with Born radii derived from ourV/r4 model (0.9 vs
1.0 kcal/mol), the precise solvation energies one calculates with
the GB/SA solvation model vary with the choice of van der
Waals radii and the source of atomic partial charges. Thus,
the small differences inGsol errors reported in Table 3 for the

Figure 3. Comparison of molecular dielectric medium polarization energies (Gpol, kcal/mol) computed by the GB method using Born radii obtained
by various methods. Panel A: GB radii from eq 5a with optimal atomic radii. Panel B: GB radii using the method of ref 19. Panel C: GB radii
using method of ref 19 with reoptimizedSx parameters.
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various methods of computing Born radii are unlikely to be
significant.
Both the PDA andV/r4 models are quite efficient. Computing

the Born radii of all 10 034 atoms in our data set by these
methods took 2.6 and 1.4 CPU seconds respectively on a 75
MHz Silicon Graphics workstation. Furthermore, since only
the last term in eq 5a is coordinate dependent, theV/r4 model
would be even faster if Born radii were to be reevaluated with
different molecular geometries. OurV/r4 method is more rapid

in part because the united-atom approximation for hydrocarbon
portions of a solute (see Methods section) eliminates the need
for considering the effects of hydrogen atoms.

IV. Conclusion

The simple analytical models described above for the Born
radii calculation can have significant value in the rapid
computation of solvation energies using the generalized Born
(GB) continuum dielectric solvation model. Not only is the
V/r4 model for computing Born radii described here computa-
tionally efficient, but its accuracy in reproducing continuum
dielectric polarization energies in the context of the GB model
is comparable to that of classical but far more computationally
intensive methods. The same can be said about the related PDA
model for Born radii recently reported by Hawkinset al.19

We find it particularly telling that the GB solvation model
with analytical Born radii reproduces the experimental solvation
energies of small molecules in water essentially as accurately
as the more elaborate Poisson-Boltzmann (PB) calculations.
There are several possible reasons for this. One possibility is
that solvation energy errors originating from surface-area-based
atomic solvation parameters or inaccurate atomic partial charges
or van der Waals radii outweigh the differences between the
GB and PB treatments. Indeed, solvation energies can vary
significantly when atomic partial charges are altered even
slightly, and it is likely that more accurate charges will improve
the performance of both the GB and PB methods. There is
also the issue that the experimental hydration energies are not
perfectly accurate and could easily be off by several tenths of
a kilocalorie/mole. In addition, both models make arbitrary
though differing assumptions about the precise shape of the
cavity in which the solute is embedded. Another possibility,
which we regard as more likely and significant, is that real water
is only crudely described by a homogeneous continuum
dielectric, especially near the solute-solvent interface. To make
continuum solvation models perform much better than they do
now, it may be necessary to treat solvent near the interface
somewhat differently than solvent lying farther from the solute.
Furthermore, the atomic partial charge model is simplistic in
comparison with electrical properties of real molecules, and it
may also need upgrading before highly accurate solvation
energies are available by calculation.
Though the continuum solvation energies computed with

analytical, approximate Born radii and the GB/SA model are
far from perfect, they seem to model the effects of real solvation
semiquantitatively and can be calculated quite rapidly. Fur-
thermore, because the GB/SA continuum model is now fully
analytical, derivatives of the energy with respect to atom
movement are available and allow the effects of solvation to
be included efficiently in energy minimization, molecular
dynamics, etc. Such analytical first and second derivatives of
the GB/SA solvation model have been a part of our molecular
modeling program MacroModel for several years and, coupled
with the newly parameterizedV/r4 model described here, should
help to make molecular modeling in water a routine and more
reliable affair.
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TABLE 3: Comparision of Experimental Hydration Free
Energies (Gsol, kcal/mol) and Those Calculated Continuum
Solvation Models Using Various Born Radius Treatments

GB/SA, Born radius source

solute eq 5a* PDA PDA* FDPB
FDPB/
SA expt

propane 1.8 1.9 1.8 1.8 1.9 2.0
n-butane 2.1 2.1 2.1 2.1 2.1 2.2
n-hexane 2.5 2.5 2.5 2.5 2.5 2.6
n-octane 2.9 2.9 2.9 2.9 2.9 2.9
2,4-dimethylpentane 2.8 2.8 2.8 2.8 2.8 2.9
cyclohexane 1.8 1.8 1.8 1.8 1.8 1.2
methanol -7.3 -6.9 -6.6 -5.7 -6.7 -5.1
1-butanol -5.0 -5.3 -4.8 -4.8 -5.6 -4.7
ethanol -5.6 -5.9 -5.4 -5.2 -6.1 -5.0
2-propanol -4.3 -4.7 -4.0 -4.2 -5.3 -4.8
1-hexanol -4.6 -4.9 -4.3 -4.4 -5.2 -4.4
acetone -2.7 -2.6 -2.3 -2.4 -2.3 -3.9
2-butanone -2.0 -2.0 -1.6 -1.9 -2.0 -3.6
acetic acid -6.4 -9.0 -7.9 -6.7 -7.0 -6.7
methyl acetate -2.1 -2.6 -2.1 -1.9 -2.1 -3.3
dimethyl ether -3.8 -1.9 -1.7 -1.9 -2.3 -1.9
benzaldehyde -5.5 -6.1 -5.2 -5.4 -5.5 -4.0
acetonitrile -4.7 -5.5 -5.3 -4.7 -4.6 -3.9
acetamide -11.2 -12.6 -11.8 -11.5 -11.7 -9.7
dimethylamine -2.3 -2.0 -1.8 -1.8 -2.7 -4.3
N-methylacetamide -8.1 -8.6 -7.7 -8.1 -8.0 -10.1
N,N-dimethylacetamide -5.7 -5.7 -5.1 -5.4 -5.5 -8.5
morpholine -7.7 -5.7 -4.7 -6.5 -8.0 -7.2
ethyl mercaptan -2.1 NA NA -2.0 -2.3 -1.2
methyl ethyl sulfide -2.0 NA NA -1.9 -2.0 -1.4
thioanisole -2.0 NA NA -2.2 -2.1 -2.7
thiophenol -2.8 NA NA -3.0 -3.3 -2.6
benzene -1.0 -1.2 -0.8 -1.0 -1.1 -0.9
phenol -6.4 -7.5 -6.4 -6.4 -7.1 -6.6
aniline -4.1 -6.9 -5.8 -5.7 -6.4 -4.9
naphthalene -1.5 -1.6 -1.0 -1.6 -1.7 -2.4
o-xylene 1.0 1.0 1.3 1.0 1.0-0.9
toluene 0.0 0.0 0.3 0.1 0.0-0.8
pyridine -4.2 -5.1 -4.3 -4.9 -4.9 -4.7
2-methylpyrazine -5.0 -6.2 -5.1 -6.0 -6.0 -5.5
mean -3.0 NA NA -2.9 -3.2 -3.2
av unsigned error 0.9 1.1 1.0 0.8 0.9

Figure 4. Comparision of experimental hydration free energies (Gsol,
kcal/mol) and those calculated with the GB/SA method, using GB radii
from eq 5a.
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standard minimization techniques (13 pages). Ordering infor-
mation is given on any current masthead page.
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